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ABSTRACT

In this study, we employed Fortran 90 programming to
generate pseudorandom numbers ranging from 0 to 1 at
various sample sizes (n = 1000, 500, 250, 125, 63, 32, 16, 8).
Subsequently, linear fitting models were applied to the
generated data. Our findings indicated that the higher
sample size of n=1000 yielded the least asymptotic
standard error for both slope ‘a’ and intercept ‘b’ parameters
in the linear equation. We observed a decrease in the sum of
squares of residuals as the sample size (n) decreased,
indicating that the linear model also provided a better fit to
the data with smaller sample sizes. The consistent nature of
the kernel density estimate plots suggests that as the
sample size increases, the estimation becomes more precise
and less affected by random noise or sampling variability,
further enhancing the reliability of the estimated PDF.

1. INTRODUCTION

distinction lies in the periodic nature of

Fortran, developed by International
Business  Machines  (IBM) in 1954,
introduced higher-level statements. The
1958 version added subroutines and
functions. Fortran 1V, released in 1962,
aimed to standardize the language. Fortran
66 became the first American National
Standards Institute (ANSI) standard in
1966. Fortran 77, released in 1978,
introduced structured programming and
new features. Fortran 90, the third ANSI
standard, was released in 1991 (Davies,
Rea, & Tsaptsinos, 2018). Random number
generators can be classified into two
categories: pseudo-random number
generators (PRNGs) and true random
number generators (TRNGs). The main

pseudo-random numbers compared to the

non-periodic nature of true random
numbers.  PRNGs are  deterministic
algorithms,  while  TRNGs offer true

randomness. The deterministic nature of
PRNGs makes them desirable for various
scientific applications, including simulations,
statistical sampling, algorithm performance
evaluation, and Monte Carlo simulations
(Akhshani et al., 2014). Akhshani et al.
(2014) studied Pseudo random number
generator based on quantum chaotic. Leva
(1992) proposed a method for generating
pseudo-random numbers that follow a
normal distribution (Leva, 1992). Having a
machine-independent random  number
generator is desirable in various scenarios
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where consistency is desired across
different machines. It is particularly useful
when a program written in a high-level
language needs to generate identical
results across machines given the same
input (Schrage, 1979). Linear regression is a
statistical technique used to model the
relationship between two variables. It
involves  fitting a linear equation to
observed data in order to estimate the best-
fitting line (Yao & Li, 2014). The most
common approach for finding this line is the
method of least-squares, which aims to
minimize the sum of the squared vertical
deviations between each data point and the
fitted line (Amiri-Simkooei & Jazaeri, 2012).
By squaring and summing the deviations,
both positive and negative differences
contribute equally to the overall measure of
goodness-of-fit, avoiding any cancellation
effects. This allows for a comprehensive
assessment of how well the linear equation
aligns with the observed data points. In
general, a smaller sum of squares of
residuals indicates a better fit of the model
to the data. A lower sum of squares of
residuals indicates that the model is able to
explain a larger proportion of the variability
in the data, resulting in a smaller amount of
unexplained variation. This can imply that
the model is more accurate and reliable in
predicting or explaining the observed data.

We have used different abbreviation
for different parameters, the significance of
which is described in subsection 1.1.

1.1 PARAMETERS USED IN THE ANALYSIS

Final Sum of Squared Residuals
(FSSR) represents the sum of the squared
differences between the predicted values
and the actual values (residuals) in the final
iteration of the linear model fitting (Amiri-
Simkooei & Jazaeri, 2012). It gives an
indication of how well the model fits the
data, with a lower value indicating a better
fit.

Relative Change in Linear Model
Iteration (RCLI) indicates the relative
change in the model’s performance during
the last iteration. It quantifies the difference
in the model’s output between the current
and previous iterations, expressed as a

proportion or percentage. A decreasing RCLI
suggests that the model is converging and
becoming more stable.

Root Mean Square of Residuals
(RMSR) is the root mean square of the
residuals, which provides an estimate of the
average magnitude of the errors or
residuals in the model (Browne, 1993). A
lower RMSR value indicates a better fit, as it
suggests that the model’s predictions are
closer to the actual data points.

Variance of Residuals' Norm (VRN)
represents the variance of the residuals,
which is often expressed as a reduced chi-
square value. It measures the variability or
dispersion of the residuals around the
model’s predictions. A lower VRN indicates a
more precise model, as it suggests that the
residuals are more closely distributed
around the predicted values.

Residual variance estimation refers
to the task of determining the most
accurate estimate of the general- ization
error that can be achieved using a limited
set of data (Liitia"inen et al., 2009). Cox and
Snell (1968) have examined a regression
problem that deals with errors following an
exponential distribution (Cox & Snell, 1968).
Kernel density estimate is a statistical
technique used to estimate probability
density functions, without making strong
assumptions about the underlying data
distribution (Altman, 1992).

We use Kernel density estimation
(KDE) to visualize the underlying distribution
of random numbers generated by a random
number generator (RNG). It provides a
smooth, non-parametric estimate of the
probability density function (PDF) of the
generated numbers (Guidoum, 2015). KDE
facilitates distribution comparison, assesses
uniformity, and analyzes the randomness
properties of generated sequences (Wand &
Jones, 1995). Comparing KDE plots allows
for identification of parameter
configurations that optimize the generated
distribution, aiding in fine-tuning and
optimizing RNG parameters.

In the context of the kernel density
derivative estimator, as the sample size n
increases, the noise (h) tends to decrease or
approach  zero  (Bhattacharya, 1967,
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Schuster, 1969; Alekseev, 1972)). Monte
Carlo simulation heavily relies on random
numbers to model and analyze complex
systems or problems (Gauli et al., 2023).

We aimed to determine the optimal
sample size that provides the most
accurate linear fit for the random numbers
generated between zero and one. We
generate a sample of n random numbers
uniformly distributed between 0 and 1 by
using Fortran algorithm.

2. MATERIALS AND METHODS

In this study, we performed a linear
model fitting using the least squares
method on a dataset. The dataset was
generated by random numbers ranging
from zero to one, and different sample
sizes, from n=1000, 500, 250, 125, 63, 32,
16, 8, were used. To accommodate the
limitations of considering large sample
sizes, we adopted a systematic approach in
which each subsequent sample size was
reduced by half, starting from n=1000. In
each iteration, the resulting decimal
obtained by halving the sample size is
rounded to either 1 or 0. We determined
the coefficients ‘@’ and ‘b’ of the linear
model and reported their values.
Additionally, we calculated the root mean
square (RMS) of the residuals and the
variance of residuals (chi-squared) to
evaluate the goodness of fit.

By applying the linear model to the
randomly generated numbers at each
sample size, we calculated the sum of
squares of residuals as a measure of the
quality of the fit. We observed the behavior
of the sum of squares of residuals for
different sample sizes, aiming to identify
the sample size that yields the lowest value.
The sample size corresponding to the
lowest sum of squares of residuals indicates
the best linear fit model for the given
dataset.

In subsection 2.1, a Fortran algorithm
was utilized to produce a set of n (say 1000)
random numbers distributed uniformly
between 0 and 1 as outlined in this study.

2.1 FORTRAN ALGORITHM FOR GENERATING
RANDOM NUMBERS BETWEEN 0 AND 1 AT
SAMPLE SIZE n

program random_number_generator

implicit none

integer, parameter :: n = 1000
real :: random_numbers(n)
integer ::i

I'Initialize the random number generator
call random_seed()

! Generate random numbers between 0
and 1
doi=1,n
call random_number(random_numbers(i))
end do

I Print the generated random numbers
doi=1,n
write(*, {(F6.4)’) random_numbers(i)
end do
end program random_number_generator

In this code, the random number
subroutine from the Fortran standard library
is used to generate random numbers
between 0 and 1. The random seed
subroutine is called to initialize the random
number generator before generating the
random numbers. The generated random
numbers are stored in the
random_numbers array and then printed to
the console using the write statement.

The algorithm utilized for generating
random numbers between 0 and 1 at a
sample size of n=1000 is presented in
subsection 2.1.1. The algorithm for
generating random numbers between 0
and 1 is modified by varying the sample
size. Specifically, the algorithm is applied
with different sample sizes of n=1000, 500,
250, 125, 63, 32, 16, and 8. These sample
sizes are taken for convenience and
flexibility in the analysis.

2.2 ALGORITHM FOR GENERATION OF DATA
USING A LINEAR MODEL WITH NOISE
program generate_data

use iso_fortran_env, only: real64
implicit none
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integer, parameter :: num_points = 1000
real(real64) :: x_values(num_points)
real(real64) :: y values(num_points)
integer ::i

! Generate x_values

doi=1, num_points

x_values(i) =i

end do

I Generate y_values using a linear model
with noise

doi=1, num_points

call random_number(y_values(i))
y_values(i) = 2.0 * x_values(i) +3.0+ 2.0 *
y_values(i) - 1.0

end do

! Write data to a file

open(unit=10, file=‘data.txt’,
status=‘replace’)

doi=1, num_points

write(10, ‘(F12.8, A, F12.8)’) x_values(i), ¢,
y_values(i)

end do

close(10)

end program generate_data

To generate the data points, we
compile and run the programme by using
Fortran code:
gfortran generate_data.f90 -o
generate_data
./generate data

This will generate the data points
file’data.txt’ required for the fitting models.
To display a plot using gnuplot, open the
terminal and type “gnuplot”. Then enter the
necessary commands, execute them, and
the resulting plot will be displayed.

This code generates num_points (set
to 1000) of data points (x_values, y_values)
using a linear model with added noise. It
then writes the data points to a file named
‘data.txt’.

The Gnuplot script is generated
within the Fortran code. It fits the data to
different models using the fit command in
Gnuplot. The models include linear,

quadratic, cubic, normal etc. But we use
linear fitting model for our work. which is
f(x) =a.x + b (Kra"mer & Sonnberger, 2012).
The code segment performs a linear fit of
the data from the file ‘data.txt’ using the
equation f(x) = a.x + b. The ‘fit’ command is
utilized to determine the optimal values of
‘a’ and ‘b’ that minimize the squared
differences between the observed data
points and the corresponding values
predicted by the linear model. The resulting
fitted line is then plotted, displaying the
linear fit alongside the data points.

“fit f(x) “data.txt” using 1:2 via a, b” is the fit
commands, and

” replot f(x) with lines title “Linear Fit” is the
command that plots the resulting fitted line

The script plots the data points as points
and overlays the fitted models as lines.

In this work, we explore the
distribution of the generated
pseudorandom numbers at different
sample sizes using kernel  density
estimation (KDE). Specifically, we examine
whether the percentage density of each
generated pseudorandom number between
0 and 1 in each sample size is identical or
shows variations.

3. RESULT AND DISCUSSIONS

In Table 1, FSSR indicates the final
sum of squares of residuals, RCLI indicate
relative change during last iteration, RMSR
indicates rms of residuals, VRN represents
variance of residuals (reduced chisquare).
Two parameters ‘@’ and ‘b’ represent the
slope and the y-intercept respectively, in a
linear model fitting.

The values of the sum of squares of
residuals decrease as the sample size (n)
decreases. This suggests that as the sample
size becomes smaller, the model tends to
provide a better fit to the data. All values of
reduced chi-squared is significantly smaller
than 1 which may suggest over-fitting or
excessive model complexity. Here we have
obtained for higher n (i.e., 1000), the
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asymptotic standard error is least. Higher
sample sizes lead to smaller values of the
asymptotic standard error, indicating a
higher level of precision and accuracy in the
estimated parameters or statistics. As the

standard error tends to approach zero. This
suggests that larger sample sizes help
minimize the uncertainty associated with
the observed data, leading to more precise
and accurate estimates of the parameters

sample size

increases,

the asymptotic

or statistics.

Table 1: Summary of metrics and parameters for linear model fitting with varying sample

size
Sample FSSR RCLI RMSR VRN (x2) a b

size

1000 169.444  -1.96464x10-10  0.584483  0.34162 1.99996 + 0.00018 2.98069 +0.05246
500 164.159 -2.06753x10-10 0.587026 0.3446 2.00002+0.000183 3.04069 +0.05269
250 69.9475 -1.16145x10-11  0.53108  0.282046  1.99925+0.0004654  3.07707£0.06738
125 41.452  -2.59692x10-13  0.580524  0.337008 2.00304+0.001439 2.81256+0.1045
63 183757  -6.72185x10-6  0.548854  0.30124 1.99871+0.003803 3.18157+0.14
32 9.98333  -4.26866x10-7  0.576869  0.332778 2.00496+0.01104 2.791+0.2088
16 3.57748  -7.72908x10-8  0.505504  0.255534 1.9725+0.02741 3.0631+0.2651
8 2.69452  -3.00252x10-9  0.670139  0.449086 2.0743+0.1034 2.46647 £0.5222

Positive values of ‘@’ suggests a
positive correlation, where an increase in ‘x’
leads to an increase in ‘y’. ‘b’ represents the
y-intercept of the linear model. In the
context of linear model fitting, a positive
value of the y-intercept ‘b’ indicates that
the dependent variable ‘y’ has a non-zero
value even when the independent variable
‘X’ is zero. The linear curve fitting to the
randomly  generated  pseudo-random
number at sample sizes n =1000, 500, 250,
125, 63, 32, 16, 8 is shown in Figure 1. The
plot 1(a) with a sample size of n=1000
shows a thousand pseudo-randomly
generated points closely aligned and
modeled accurately by the overlaid linear fit
line. The subplot 1(b) lowering the sample
size to 500 points has the data points
beginning to slightly deviate and disperse
around a linear model fit that starts
displaying some decline in precision. At a

sample size of 250 points in subplot 1(c),
the pseudorandom data shows greater
variability around an increasingly imprecise
linear fit compared to higher sample sizes.
With only 125 points in subplot 1(d), the
points are loosely scattered around a
moderately precise but noticeably under
fitting linear model line. The linear fit in the
subplot 1(e) with 63 points struggles to
capture the variability exhibited by more
erratically  dispersed data points. A
markedly imprecise linear model fit with
low explanatory power is observable in the
subplot 1(f) containing merely 32 highly
scattered pseudorandom points. Extreme
data point dispersion paired with an
inaccurate linear fit unable to capture the
variability characterizes the subplot's 1(q)
16-point sample. Lastly, an ineffectual
linear model fit performed on just 8 wildly
spread data points comprises subplot 1(h).
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The correlation matrix of the fit
parameters at different sample sizes is
given in Table 2. For the sample size of
n=1000, the correlation coefficient between
‘a’” and ‘b’ in the correlation matrix is -0.866.
This value indicates a strong negative
correlation between these two variables. In
the second correlation matrix,
corresponding to a sample size of n=500,
the correlation coefficient between ‘a’ and
‘b’ is -0.867. Although the difference
between -0.866 and -0.867 may appear

small, it suggests a slight change in the
strength of the negative correlation
between ‘@’ and ‘b’. While the correlation
coefficients show slight fluctuations, they
universally indicate an inverse association
between the slope and intercept of the
fitted linear models across all examined
sample sizes i. e. n= 250, n = 125, n=63,
n=32, n=16, n=8. This reflects the inherent
trade-off between these two parameters
when fitting a line.

Table 2: Correlation Matrix for Different Sample Sizes

n=1000 a b n=500 b n=250 a b
a 1.000 a 1.000 a 1.000
b -0.866 1.000 b -0.866 1.000 b -0.867 1.000
n=125 a b n=63 b n=32 a b
a 1.000 a 1.000 a 1.000
b -0.868 1.000 b -0.869 1.000 b -0.873 1.000
n=16 a b n=8 a b
a 1.000 a 1.000
b -0.879 1.000 b -0.891 1.000

The physical meanings inferred from
the eight sets of correlation matrices are
relatively consistent. They all suggest a
negative relationship between ‘@’ and ‘b’,
where increases in one variable tend to be

associated with decreases in the other. The
subtle differences in the correlation
coefficients reflect slight variations in the
strength of this negative relationship, but
the overall interpretation remains the same.
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Figure 2: Variation in slope with different sample size

The variation in slope at different
sample sizes (n=1000, n=500, n=250,
n=125, n=63, n=32, n=16, n=8) with

asymptotic standard error is shown in Table
1 and visualized in Figure 2. It seems the
n=1000 slope data is plotted slightly offset
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from its expected location at 1000 on the x-
axis in order to reduce visual Cclutter,
maintain even data point spacing, and
enable cleaner visual comparisons against
the other sample sizes presented. This
appears to be a choice made to improve
graphical clarity rather than driven by the
underlying data or statistical analysis. The
interpretation and  conclusions  would
remain unchanged between plotting it at
950 or 1000.

3.1 KERNEL DENSITY ESTIMATE (KDE) AT
DIFFERENT SAMPLE SIZES

In this section, we show the kernel
density estimate at different sample sizes.
The density along the y-axis is represented
as a percentage and the value of x-axis
represents the random number generated
between 0 and 1. When the sample size n is
large (1000 or 500) in the subplots 3(a) and
3(b), the KDE plots are very smooth and

distribution. This matches the theory that
larger sample sizes lead to more precise
density estimates. As n decreases as in
subplots 3(c), 3(d) 3(e), 3(f), fluctuations
and variability in the KDE plots increase
progressively. This aligns with the statistical
expectation that smaller sample sizes
produce density estimates that tend to be
more erratic and less reliable. At very small
n (16 or 8) in subplots 3(g) and 3(h), the
KDEs show completely chaotic variations
rather than any visible underlying
distribution. Such massive distortions are
consistent with having too little data to
provide any reasonable density
approximation. The larger sample size KDEs
are consistent in showing the uniform
distribution, while smaller n plots get
successively more variable. This matches
the stated observation about consistency
across sample sizes.

accurately represent the expected uniform
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4. CONCLUSION

As the sample size increases, the
asymptotic standard error decreases which
suggests that the estimate obtained from a
large sample is expected to be closer to the
true value of the parameter, with less
variability or uncertainty. Lower asymptotic
standard error in larger sample sizes
provide more reliable estimates and can
offer better insights into the population.
However, where the available sample size is
limited, the model can still yield a
satisfactory fit, as indicated by the decrease
in the sum of squares of residuals. The
consistent nature of kernel density estimate
implies that increasing or decreasing the
sample size does not affect the overall
shape of the estimated density, indicating
stability in the estimated distribution. This
consistency can be useful in various
statistical analyses and modeling tasks. For
example, if the density estimate is used to
estimate probabilities or perform hypothesis
testing, the stability across sample sizes
ensures that the results obtained are
reliable and not heavily influenced by the
sample size.
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