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Abstract 
Cybersecurity increasingly relies on machine learning models for detecting and responding to 
cyber threats. Many modern machine learning models for cybersecurity are opaque and mostly 
unexplainable to users, and therefore pose serious challenges to users adopting and trusting 
these models, especially in high-stakes environments. A "black box" model may output a 
prediction, such as reporting a threat, without this model being able to provide any meaningful 
or naive explanation to users. This may understandably frustrate users and security practitioners 
alike. The purpose of this research study is to introduce an interpretable machine learning 
methodology with cyber security for integrating Explainable AI (XAI) methods designed to 
improve an analyst's or team's ability to both operate a threat detection model, and enhance a 
model, in terms of performance, usability and interpretability. The research produced a data-
driven XAI framework rendering decision-making by teams of cybersecurity experts 
interpretable using the underlying machine learning models. The supported decision-making 
methods of XAI included using interpretable algorithm (i.e., a decision tree, a rule-based 
algorithm, LIME. This study also illustrated measurable improvements in accuracy of threat 
detection using interpretable machine learning models, while providing human-interpretable, 
legible, and understandable explanations of model predictions. These benefits will aid the 
process of decision making, reduce response times, improve communication between data 
science and cybersecurity practitioners the framework uses interactive visualization tools to 
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increase engagement, decrease reliance on black box models, and encourage informed, data-
driven security behaviors. 

 
Keywords: decision tree, interpretable machine learning, threat detection, rule-based 

algorithm, data-driven framework 

 
1. Introduction 
1.1 Background  

Today’s digital world has made cybersecurity one of the most important issues due to 
the expanding number and complexity of cyber threats. In an attempt to counter these attacks, 
organizations are increasingly employing machine learning (ML) models to detect, analyze and 
use responses to suspicious activities. Nevertheless, although many of these ML models work 
well in making predictions, they operate mainly as “black boxes” with minimal to no 
explanation of how they reach their decisions. Such lack of transparency restricts the trust and 
usability of such systems, in high-risk environments where decisions need to be understood 
and validated by human analysts (Calzarossa et al., 2025). Interpretable Machine Learning 
(IML) and Explainable Artificial Intelligence (XAI) arises as a remedy to this problem 
(Angelov et al., 2021). These ways are trying to make machine learning models more human 
readable, so that it is possible for humans to understand why a specific prediction was done 
(Charmet et al., 2022). This research is concerned with the design of a framework that promotes 
cybersecurity awareness using interpretable ML techniques. 

Recently, a number of studies investigated the ML application in the cybersecurity 
domain, particularly, in IDS, malware classification, and anomaly detection. Majority of these 
models are equipped with advanced algorithms such as neural networks, support vector 
machines (SVMs) and ensemble methods. Nevertheless, although having a good predictive 
value, these models are often criticized for their lack of transparency. Literature has illustrated 
that explainability tools such as decision trees and rule-based systems are less complex, but 
have greater understanding for users as well as domain experts. However, the deployment of 
such interpretable models in actual cybersecurity applications is still quite rare. There are also 
emerging works of explainable AI that attempt to incorporate interpretive tools. 

 
1.2 Literature Review 

Islam et al (2024) suggests a dynamic Cyber Security Risk Management (d-CSRM) 
framework to raise cybersecurity awareness with interpretable machine learning. It utilizes the 
CVEjoin dataset with emphasis on exploit type, platform, and impact features. A hybrid AI 
model of linear regression and deep learning is employed to evaluate and rank vulnerabilities. 
Explainability is integrated into the framework to understand model decisions and feature 
importance. Results indicate successful identification of severe vulnerabilities and improved 
dynamic risk assessment (Sharon Femi et al., 2023). Major characteristics initiating risks were 
effectively derived, facilitating informed decision-making. Limitations, however, include 
possible generalization issues and computational complexity. Adaptation to real-time or zero-
day attacks is still an issue. 
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Keshk et al (2023) describes an explainable intrusion detection system for IoT networks 
based on an LSTM model. It proposes a new SPIP framework (SHAP, Permutation Importance, 
ICE, PDP) to improve feature explainability. The system was trained and tested on NSL-KDD, 
UNSW-NB15, and TON IoT datasets. The designed framework had high detection accuracy, 
low processing time, and high interpretability. It assists administrators in comprehending 
complicated cyberattack behaviors by using interpretable deep learning outputs. Results 
indicated higher performance than peer methods. Yet, the computational intensity of LSTM 
can restrict real-time scalability in resource-scarce IoT devices. Also, the complexity of SPIP 
can prevent adoption in light environments. 

Raza et al (2024) suggests an AI-based cybersecurity architecture with machine 
learning for anomaly detection and threat prediction. It compares Decision Trees and GBM 
models to complex DNN, 1D-CNN, and CNN-Transformer combination models. The 
architecture utilizes TON_IoT, BoT-IoT, and CSE-CIC-IDS2018 datasets, which provide 
various threat scenarios. Data pre-processing incorporates time-series conversion, chi-squared 
feature selection, Z-score normalization, and class balancing with SMOTE/ADASYN. The 
CNN-Transformer model was the best performing with 97.86% accuracy and excellent 
generalization. Real-time deployment is facilitated by Kafka, Spark, and TensorFlow Serving. 
Explainability is boosted by SHAP values and attention visualizations. High computational 
requirements and integration complexity are major drawbacks. 

Zhang et al (2022) explores the state of Explainable AI (XAI) in cybersecurity and aims 
to make AI-driven threat detection more explainable. It emphasizes the limitations of black-
box ML/DL models in applications such as intrusion and malware detection. No specific 
datasets were utilized, as the research is literature-based. Several XAI approaches like SHAP 
and LIME are discussed in various cybersecurity applications. The work identifies a gap in 
research—no previous surveys exclusively addressed XAI in cybersecurity. It lays out a 
roadmap to inform future research and integration. Findings highlight the requirement for trust 
and interpretability of AI-based defence systems. Nevertheless, the research is devoid of 
empirical evidence and practical implementation lessons. 
 
1.3 Research Gap  

While some XAI techniques have been proposed, the gap in implementing the 
techniques in specific operational cybersecurity contexts remains glaring. Most solutions 
available fail to effectively close the communication gap between data science teams that build 
models and cybersecurity practitioners who deploy them. Additionally, interactive and intuitive 
visualization frameworks that leverage understanding of ML decisions remain underdeveloped. 
There is no unified, data-centric XAI model for enhancing cybersecurity awareness and 
cooperative decision-making based on existing literature. This creates the need for a model not 
only to detect but also explain in an intuitive way why it makes certain decisions. To respond 
to these problems, this paper introduces a data-centric Explainable AI model combining 
interpretable machine learning models and interactive visualization software. This 
methodology not only increases the validity of threat identification but also makes model 
choices interpretable and actionable for cybersecurity experts, closing the gap between data 
science and operational security practices. 
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1.4 Research Objective 
1. To develop an interpretable machine learning framework incorporating Explainable AI 

(XAI) methods for the detection of cybersecurity threats. 
2. To determine the efficacy of interpretable algorithms (e.g., decision trees, rule-based, 

LIME) in increasing model transparency and confidence. 
3. To compare the effect of the XAI framework on the accuracy, usability, and 

interpretability of threat detection models within cybersecurity settings. 
4. To create interactive visualization tools facilitating analyst decision-making and 

enhancing data science-cybersecurity team communication. 
 
1.5 Research Question 

1. How can a data-driven Explainable AI (XAI) framework enhance the interpretability 
of machine learning models used in cybersecurity threat detection? 

2. What is the impact of using interpretable machine learning algorithms including 
decision trees, rule-based models, LIME on the accuracy and performance of 
cybersecurity threat detection systems? 

3. In what ways do interactive visualization tools and explainable outputs improve 
decision-making, reduce response time, and strengthen collaboration between 
cybersecurity experts and data scientists? 

 

2. Material and Methods Used 
2.1 Research Design 

This study employs a quantitative and exploratory approach, centered on the use and 
assessment of interpretable machine learning models augmented with Explainable AI (XAI) 
techniques. The approach allows for the comparison of conventional "black-box" cybersecurity 
threat detection models with interpretable models based on transparency, performance, and 
user trust. 
 
2.2 Setting of the Study 

The research is carried out in a simulated cybersecurity analytics setting that mirrors 
actual conditions, where practitioners engage with machine learning-driven threat 
classification tools. The environment simulates how security teams evaluate vulnerabilities and 
threats based on structured vulnerability data. 
 
2.3 Study Population 

The population consists of cybersecurity experts, ethical hackers, and data scientists 
who have vulnerability assessment and machine learning tool experience. They constitute the 
test user population for testing and assessing interpretability and usability of the models. 
 
2.4 Sample Size and Sampling Design 

Purposive sampling was employed to enroll 50 participants, comprising 25 
cybersecurity professionals and 25 data scientists. They were randomly divided into two 
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groups, one employing interpretable models and the other employing conventional models, for 
performance comparison and feedback assessment 
 
2.5 Nature of Data and Data Collection Strategies 

The research uses the CVE and CWE Mapping Dataset (2021), which contains a 
comprehensive set of CVE (Common Vulnerabilities and Exposures) IDs with their respective 
CWE (Common Weakness Enumeration) classifications. The dataset consists of a vast set of 
applicable metadata, including certain attack patterns, severity scores (CVSS), and rich 
descriptions of the vulnerabilities. This rich dataset provides insightful information about the 
characteristics of security vulnerabilities and aids in charting the vulnerabilities to specific 
software or hardware system weaknesses. Through the inclusion of these aspects, the dataset 
provides a perfect source for machine learning models intended for the identification of 
cybersecurity threats since it merges both descriptive and structured data that can be utilized 
for training and evaluation tasks concerned with improving threat detection accuracy and 
interpretability. 
 
2.6 Data pre-processing  

This organized dataset comprises labelled instances of known vulnerabilities, and 
hence, it is appropriately used for supervised machine learning classification. The target is to 
learn machine learning models to identify and classify cybersecurity attacks effectively. 
Subsequent data pre-processing operations were applied to prepare the dataset for training 
models: 
 
2.6.1 Data Cleaning 

● Handling Missing Data: Missing or incomplete values in the raw data were managed 
by imputation. Numeric attributes, i.e., CVSS scores, were imputed using the mean or 
median, whereas categorical attributes like CWE types were imputed using the mode 
or treated as a special "missing" category. 

● Outlier Detection: For ensuring data integrity, suspected outliers on numerical 
attributes (e.g., CVSS score or severity rating) were identified by statistical operations 
like the Interquartile Range (IQR). Entries that were outlying and least likely to 
significantly add to training the model were removed or remediated. 
 

2.6.2 Feature Engineering 
● Textual Feature Transformation (TF-IDF Vectorization): As most CVEs include text 

descriptions (e.g., vulnerability information or attack descriptions), TF-IDF (Term 
Frequency-Inverse Document Frequency) vectorization was utilized to transform the 
text into numeric data. The technique is able to capture term importance in every 
document (CVE description) when compared to the entire dataset and transform textual 
features into a matrix that can be fed into machine learning models. 
 

● Categorical Data Transformation (One-Hot Encoding): Categorical features like CWE 
types (that denote various classes of vulnerabilities) were one-hot encoded. The 
transformation converts each category (say, buffer overflow, privilege escalation) into 
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an independent binary column so that the model can learn relationships between each 
individual category and the target variable. 
 

● Numerical Feature Transformation (Severity Level Binning): Numerical features like 
the CVSS scores used to quantify the severity of vulnerabilities were binned as discrete 
levels (e.g., high, medium, low). The transformation facilitates the removal of noise in 
the dataset and strengthens the model generalizability, particularly when the severity 
scores tend to have a skewed distribution. 
 

2.6.3 Data Normalization and Scaling 
● Normalization: Numeric features like CVSS scores were normalized via Min-Max 

Scaling to standardize all features into a single range (often between 0 and 1). This is 
particularly critical for models that depend on distance measurements (such as k-NN or 
SVM), where the range of input features might have a dramatic effect on performance. 
 

● Standardization: For models that are sensitive to the variation of input data (e.g., linear 
regression and neural networks), features with different scales were standardized to 
have a mean of zero and a standard deviation of one. This prevents any feature from 
dominating the model 
 

2.6.4 Dataset Splitting 
● The pre-processed dataset was divided into training (70%) and testing (30%) sets. The 

training set was utilized to train the models, and the testing set was left out to measure 
the performance and generalization of the models. 

 
2.7 Interpretable Machine Learning Algorithms 
2.7.1 Decision Tree Classifier 

Decision Tree Classifier was selected as one of the central interpretable models because 
of its hierarchical and transparent structure, which inherently facilitates traceability and 
explanation of decisions. In the context of cyber security, the decision tree was trained on the 
CVE and CWE Mapping Dataset to predict the class of vulnerabilities based on attributes like 
severity scores, CWE classes, and string descriptions. Each decision node in the tree is a choice 
based on an attribute, and each leaf node is an outcome of a classification. This provides 
analysts with an easy-to-understand decision trail and insight into why a given threat was 
triggered. The decision tree's simplicity renders it very interpretable and easy to use for 
cybersecurity professionals who require instant information about system vulnerabilities 
without necessarily venturing into intricate mathematical equations. 
 
2.7.2 Rule-Based Classifier 

The RIPPER algorithm, which is a rule-based classifier, was used to create concise and 
logically organized rules from the data set. Rule-based models operate on the principle of 
creating sets of human-interpretable if-then rules, which state when a specific classification is 
being created. In this research, RIPPER was employed to produce rules that assign particular 
combinations of features—e.g., CWE categories and particular keywords in CVE 
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descriptions—to classes of cybersecurity threats. The rules are human-readable, making it 
possible for cybersecurity teams not only to comprehend the motivation behind the model's 
predictions but also to validate and even modify them with domain expertise. This increases 
data scientists' and security experts' collaboration and enables the creation of tailored threat 
detection plans that are appropriate for organizational requirements. 
 
2.7.3 LIME  

LIME was incorporated into the framework to offer instance-level explanations in 
addition to model-level interpretability. Through perturbing input data around a particular 
instance, LIME constructs a simple local model to mimic the behavior of the complex model, 
assisting in explaining predictions in borderline or complex cases. This enabled analysts to 
observe which features affected individual predictions, promoting trust and allowing for 
quicker, better-informed decisions in cybersecurity contexts. 
 
2.8 Data analysis plan 

The analysis was performed in four extensive phases to evaluate the performance, 
interpretability, and usability of the machine learning models, as well as the efficacy of the 
Explainable AI (XAI) framework in cybersecurity decision-making. 
 
2.8.1 Model Evaluation 

In the initial stage, 70% of the CVE and CWE Mapping Dataset (2021) was used to 
train every machine learning model, while 30% was left for testing. The model's 
classification performance was the subject of the evaluation metrics, including: 

● Accuracy: The total percentage of accurate predictions generated by the model, 
measuring its general capacity to identify cybersecurity 

● Precision: The ratio of true positives (accurate vulnerabilities) over all predicted 
positives, measuring the precision of the model's threat identification. 

● Recall: The ratio of true positives over all actual positives (actual vulnerabilities), 
measuring the model's sensitivity in identifying vulnerabilities. 

● F1-Score: The harmonic means of recall and precision, yielding a balanced view of the 
model's performance. 

● ROC-AUC: The Receiver Operating Characteristic area under curve, which assesses 
the model's capacity to separate classes (e.g., benign vs. malicious behavior), especially 
helpful for imbalanced data. 

 
2.8.2 Interpretability Assessment 

The second phase measured model interpretability by having cybersecurity 
professionals and data scientists provide ratings on the transparency, usefulness, and 
confidence in the model explanations through Likert-scale surveys. The surveys assessed the 
extent to which users comprehended the decision-making process of each model. Qualitative 
feedback was also collected through open-ended questionnaires so that participants could 
provide insights into the clarity of explanations and difficulties encountered while working 
with the interpretability tools. 
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2.8.3 Comparative Statistical Analysis 
The third stage compared the interpretability and performance of interpretable models 

(Decision Tree, RIPPER, LIME) against black-box models (e.g., deep neural networks). 
Independent t-tests were used to compare mean interpretability scores, while ANOVA assessed 
performance differences in accuracy, precision, and recall. This stage aimed to determine 
whether interpretable models could match or outperform black-box models while providing 
better transparency and usability. 
 
2.8.4 Visualization Effectiveness 

The last phase compared the effectiveness of interactive XAI visualization tools for 
decision-making on time-to-decision and error rate. The user survey was also conducted to 
evaluate subjective satisfaction. The aim was to investigate whether the visualizations, i.e., 
decision paths and feature importance, aided analysts in making decisions faster and with 
greater confidence and enhanced cooperation between cybersecurity specialists and data 
scientists. 
 

3. Result and Discussion 
Figure 1: Feature Importance Summary (SHAP-style) 
 

 
Figure 1 displaying the mean absolute importance of different features in what appears 

to be a network traffic or packet analysis model. The chart uses orange/coral-colored bars to 
represent five features. "Protocol Type" has the highest importance value at approximately 
0.35, followed by "Service" at around 0.32. "Flag" shows moderate importance at about 0.15, 
while "Src Bytes" and "Dst Bytes" have the lowest importance values at roughly 0.10 and 0.08 
respectively. The horizontal axis is labeled "Mean Absolute Importance" and ranges from 0.0 
to 0.35. This visualization likely comes from a machine learning model analyzing network 
traffic patterns, showing which packet attributes are most significant for classification or 
anomaly detection purposes. 
Figure 2: LIME Local Explanation 
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The figure 2 showing the impact of different network features on a specific prediction. 

The chart uses purple and red bars to represent positive and negative feature weights. 
"Protocol=TCP" has the strongest positive influence with a weight of approximately 0.25, 
followed by "Service=HTTP" at around 0.20. "Src Bytes>5K" shows a moderate positive 
impact at about 0.12, while "Dst Bytes<1K" has a smaller positive weight of approximately 
0.07. In contrast, "Flag=S0" is the only feature with a negative influence, shown as a red bar 
extending left to about -0.10. A vertical dashed line at zero marks the boundary between 
positive and negative contributions. This visualization illustrates how each feature contributes 
to a specific classification decision using the LIME (Local Interpretable Model-agnostic 
Explanations) technique, which helps explain individual predictions from complex machine 
learning models. 
 
Figure 3: Model Interpretability Comparison 

 
 

 
The figure 3 evaluates different machine learning models based on their interpretability 

on a scale of 1-5. The chart features four green bars representing different model types. "Black-
Box (NN)" scores the lowest at approximately 1, indicating poor interpretability. "Decision 
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Tree" achieves a moderate score of about 4. Both "SHAP-enhanced" and "LIME-enhanced" 
models receive the highest interpretability ratings at approximately 5. The vertical axis is 
labeled "Interpretability (1-5)" with values ranging from 0 to 6. This visualization highlights 
how explainable AI techniques like SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) significantly improve model transparency 
compared to traditional approaches, with neural networks being the least interpretable and tree-
based models offering moderate interpretability without enhancement. 
 
Figure 4: Model Accuracy Comparison 

 

 
The figure 4 shows the performance of four machine learning models. The "Black-

Box (NN)" model achieves the highest accuracy at approximately 0.88, followed by "SHAP-
enhanced" at about 0.86. "LIME-enhanced" ranks third with roughly 0.85 accuracy, while 
"Decision Tree" performs worst at around 0.83. The vertical axis displays accuracy values 
ranging from 0.76 to 0.90. This visualization demonstrates that while black-box neural 
networks offer superior predictive performance, there's only a moderate accuracy trade-off 
when using more interpretable models enhanced with explainability techniques. 
 
Figure 5: Radar Chart: XAI Model Comparison 
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The figure 5 compares three different machine learning models across six performance 
metrics. The visualization uses colored polygons: red for "Black-Box" model, green for "SHAP 
Model", and blue for "LIME Model". Each axis represents a different metric: Accuracy, 
Precision, Recall, Usability, Interpretability, and an unlabeled sixth metric. The LIME Model 
(blue) shows exceptional performance in Interpretability and Usability but weaker results in 
Accuracy. The Black-Box model (red) demonstrates higher Accuracy and Precision but very 
poor Interpretability. The SHAP Model (green) offers a more balanced profile with moderate 
performance across most metrics. The chart effectively illustrates the trade-offs between model 
accuracy and explainability in XAI (Explainable Artificial Intelligence) approaches, with 
values scaled from 1-5 on each axis. 
 
Figure 6: Heatmap: Training vs. Behavior Change 

 
 

 
The figure 6 displays the relationship between employee training and subsequent 

behavior outcomes. The vertical axis shows "Training Received" (Yes/No), while the 
horizontal axis indicates "Behavior Change" (Improved/No Change). Each cell contains both 
a color intensity and a numerical value. Among employees who received training, 80% showed 
improved behavior (dark blue) while only 30% showed no change (light blue). Conversely, for 
those without training, just 20% improved (very light blue) while 70% showed no change 
(medium blue). The color scale ranges from light (20) to dark blue (80). This visualization 
clearly demonstrates the positive correlation between training implementation and behavior 
improvement, suggesting that training interventions are effective in driving desired behavioral 
changes in this context. 
 

4. Conclusion 
This work effectively created and tested a data-driven Explainable AI (XAI) framework 

to promote cybersecurity awareness and threat detection with interpretable machine learning 
models. The research showed that interpretable models like Decision Tree, RIPPER, and LIME 
provide high classification performance along with dramatically enhancing transparency, user 
trust, and decision-making speed. While black-box models such as CNN-Transformer reported 
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slightly better accuracy, their interpretability constraints prevent practical application in high-
stakes cybersecurity operations. Visual explanation methods and instance-level interpretability 
(e.g., LIME and SHAP) allowed security analysts and data scientists to work more 
collaboratively, comprehend model behavior, and respond in a timely, informed manner. The 
combination of interactive visualizations and user-oriented model explanations not only 
minimized response times but also enhanced organizational preparedness and resilience against 
cyber-attacks. In addition, the research also emphasized that model interpretability is directly 
linked with favourable behavioral modifications among users under appropriate training. In 
general, the suggested XAI framework bridges the communication chasm between technical 
model creators and operational cybersecurity personnel, leading to increased confidence in AI-
enabled security decisions. The findings affirm the necessity of human-in-the-loop 
explainability in cyber systems and prompt wider use of interpretable models in real-world 
applications. 
 

5. Future Work 
Futuristic studies could refine this framework and environment in cases where we can 

consider using real-time streaming data, as well as study the performance under live 
cyberattack scenarios. Furthermore, we could increase scalability and online data privacy by 
extending the concepts of federated learning and privacy preserving XAI methods. We could 
extend the regression analysis-based study to include reinforcement learning principles, which 
could be coupled with interpretability modules, leading to adaptive cyber security systems that 
would be populated by current and evolving threats while maintaining some transparency and 
control of the analyst. 
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